28 research outputs found

    INFORMATION MODELING OF BEHAVIORAL PROJECT MANAGEMENT COMPETENCIES

    Get PDF
    The application of project management practices in contemporary business is continuously increasing with the aim of delivering the work packages in a more cost-conscious and controlled way while making the best use of limited human resources to meet customer requirements and create competitive advantage. In order to be considered competent, individuals working in the field should demonstrate a certain level of knowledge, skills, and abilities – assessed, developed or improved through a certification system. Taking into account the importance of information modeling and technology in the domain of project management as a set of practices that determine structure, lifecycle and accessibility requirements of information and the emphasis placed on the behavioral competencies of project, program and portfolio managers, the authors of the paper focused on exploring the challenges and specificities of the project management profession in Croatia. Empirical research was conducted in two steps. Firstly, a qualitative research was done using in-depth interviews with a member of the editorial board of a new project management international certification standard and two representatives of the certification body in Croatia: the director and the assessor. The collected data were analyzed using grounded theory approach and results in four main areas were obtained: project management and certification challenges, addressing certification body needs, the missing link between educational institutions and project management in practice and key project management competencies. In the next step, a quantitative research with a questionnaire as a research instrument was conducted among 53 certified project, program and portfolio managers in Croatia regarding their perception of the importance of the behavioral project management competencies. The results show that the majority of the certified experts in the field consider "leadership" to be the most important behavioral project management competency, closely followed by teamwork and self-management, while relations and engagement, conflict and crisis as well as negotiation and resourcefulness are considered to be of the least importance for conducting the project, program, and portfolio successfully. Statistically significant differences in assigning importance to various project management competencies were revealed with regard to several respondents' independent characteristics

    L-arginine reduces tubular cell injury in acute post-ischaemic renal failure

    Get PDF
    Background. The pathophysiology of renal ischaemia, resulting in tubular cell injury and leading to acute renal failure (ARF), remains unclear. An ever-increasing number of investigations focus on a possible role of nitric oxide (NO) in regulating circulation during ARF. In this context, we investigated the influence of chronic stimulation or inhibition of NO synthesis, or both, on haemodynamic parameters, histology and plasma renin activity (PRA) after ischaemia-reperfusion injury of rat kidneys. Methods, Experiments were performed on adult, male Wistar rats. Before induction of ARF, a group of animals was treated with a NO synthesis inhibitor (L-NAME) and another group was treated with a precursor of NO synthesis (L-arginine). The animals received those substances for 4 weeks. Control groups received the same amount of tap water for 4 or 8 weeks and were divided into groups with ARF (4 weeks-ARF group and 8 weeks-ARF group) and a sham-operated group. Another group of rats was treated first with L-NAME and then with L-arginine in their drinking water, for 4 weeks for each of these two substances. All parameters were evaluated 24 h after the induction of ischaemic ARF or the sham operation. Results, Our results show that such long-term stimulation of NO release by L-arginine improved renal haemodynamics in the ischaemic form of ARF. Renal blood Bow (RBF) increased by 96% in the L-arginine-treated rats with ARF compared with the group with ARF alone. Inhibition of NO synthesis worsens renal haemodynamics after ARF. However, this aggravation can be reversed by L-arginine. The rate of water reabsorption was reduced in all groups with ARF, but this reduction was least in the group treated with L-arginine. The rate of Na+ reabsorption was reduced in all groups 24 h after renal ischaemia, but a significant decrease was observed after the inhibition of NO synthesis. Histological examination of the kidney specimens showed that morphological changes were least in the rats treated with L-arginine, when compared with all other groups with ARF. Nevertheless, the lesions were most prominent in the L-NAME + ARF group. In this group, the areas of corticomedullar necrosis were more widespread in comparison with other groups, especially the L-arginine group where only swelling of the proximal tubular cells was observed. Treatment with L-NAME was not accompanied by any significant alteration in the plasma concentration of angiotensin I (ANG I), while in the group treated with L-arginine ANG I had a tendency to decrease. Conclusions. Acute post-ischaemic renal failure may be alleviated by administering the NO substrate (L-arginine). NO acts cytoprotectively on tubular epithelial cells in ischaemia-reperfusion injury of rat kidney. Evidence of this comes from both histopathological findings and increased tubular water and sodium reabsorption. However, inhibition of NO synthesis (provoked by L-NAME) worsens renal haemodynamics and aggravates morphological changes after ARF. These aggravations can, however, be reversed by L-arginine

    A capacity management tool for a portfolio of industrialization projects

    Get PDF
    The management of a project portfolio is a complex decision process because it encompasses the achievement of multiple objectives. A critical point that increases the complexity in the decision-making process of a portfolio manager is the allocation of human resources to manage the projects of the portfolio, project managers, which is crucial to the organization’s performance. In this case, the project manager can manage more than one project simultaneously and it is necessary to assign project managers to the projects, considering that project activities have an amount of work to be accomplished. The main objective of this work was to provide support for this capacity management problem, which aims to provide an easier decision-making process for the capacity management of an industrialization project portfolio. Therefore, it was developed: a hybrid model that creates a schedule respecting the resource constraints and the established due dates; a recommendation system that considers project managers’ allocation and projects requirements; and, an automatic status report that allows identifying the project portfolio capacity usage.This work is supported by: European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project nº 39479; Funding Reference: POCI-01-0247-FEDER-39479]

    Prolonged exposure does not increase soil microbial community compositional response to warming along geothermal gradients

    Get PDF
    Global change is expected to affect soil microbial communities through their responsiveness to temperature. It has been proposed that prolonged exposure to elevated temperatures may lead to progressively larger effects on soil microbial community composition. However, due to the relatively short-term nature of most warming experiments, this idea has been challenging to evaluate. The present study took the advantage of natural geothermal gradients (from +1°C to +19°C above ambient) in two subarctic grasslands to test the hypothesis that long-term exposure (>50 years) intensifies the effect of warming on microbial community composition compared to short-term exposure (5–7 years). Community profiles from amplicon sequencing of bacterial and fungal rRNA genes did not support this hypothesis: significant changes relative to ambient were observed only starting from the warming intensity of +9°C in the long term and +7°C/+3°C in the short term, for bacteria and fungi, respectively. Our results suggest that microbial communities in high-latitude grasslands will not undergo lasting shifts in community composition under the warming predicted for the coming 100 years (+2.2°C to +8.3°C).This work was supported by Research Foundation–Flanders (FWO) [1293114N to JTW, 12B0716N to SV, 11G1615N to NIWL], Icelandic Research Council [163272-051 to BDS], Climate Change Manipulation Experiments in Terrestrial Ecosystems (ClimMani) COST Action [ES1308], the European Research Council grant ERC-SyG-610028 IMBALANCE-P and the University of Antwerp: University Research Fund (BOF).Peer Reviewe

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Do agile managed information systems projects fail due to a lack of emotional intelligence?

    Get PDF
    YesAgile development methodologies (ADM) have become a widely implemented project management approach in Information Systems (IS). Yet, along with its growing popularity, the amount of concerns raised in regard to human related challenges caused by applyingADMare rapidly increasing. Nevertheless, the extant scholarly literature has neglected to identify the primary origins and reasons of these challenges. The purpose of this study is therefore to examine if these human related challenges are related to a lack of Emotional Intelligence (EI) by means of a quantitative approach. Froma sample of 194 agile practitioners, EI was found to be significantly correlated to human related challenges in agile teams in terms of anxiety, motivation, mutual trust and communication competence. Hence, these findings offer important new knowledge for IS-scholars, project managers and human resource practitioners, about the vital role of EI for staffing and training of agile managed IS-projects

    Lipid biomarker temperature proxy responds to abrupt shift in the bacterial community composition in geothermally heated soils

    No full text
    Specific soil bacterial membrane lipids, branched glycerol dialkyl glycerol tetraethers (brGDGTs), are used as an empirical proxy for past continental temperatures. Their response to temperature change is assumed to be linear, caused by physiological plasticity of their, still unknown, source organisms. A well-studied set of geothermally warmed soils (Iceland) shows that the brGDGT fingerprint only changes when the soil mean annual temperature is warmer than 14 °C. This sudden change in brGDGT distribution coincides with an abrupt shift in the bacterial community composition in the same soils. Determining which bacterial OTUs are indicative for each soil cluster shows that Acidobacteria are possible brGDGT producers, together with representatives from the Actinobacteria, Chloroflexi, Gemmationadetes and Proteobacteria. Projecting the lipid fingerprint of the cold and warm bacterial communities onto the global soil calibration dataset creates two distinct soil clusters, in which brGDGTs respond differently to temperature and, especially, soil pH. We show that, on a local scale, a community effect rather than physiological plasticity can be the primary driver of the brGDGT-based paleothermometer along large temperature gradients. This threshold response needs to be taken into account when interpreting brGDGT-based paleo-records
    corecore